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We consider a rigid strip-mass of finite width and infinite length which 

lies on an elastic half-space. Friction between the strip and the half- 

space is assumed absent. 

The motion of the strip is excited by a plane wave (longitudinal or 

transverse) which emerges from the depths of the half-space at an arbi- 

trary angle. but in such a way that the normal to the front is perpen- 

dicular to the edge of the strip. The problem considered is plane. In 

this paper the parameters of small motion of the strip are determined, 

i.e. the vertical displacement of its middle and its angle of rotation. 

To determine the resultant force and moment of the stresses under the 

strip, the mixed boundary value problem for an elastic half-plane is 

solved. In this solution the results of [l] are used. 

A neighboring problem for the acoustical case was examined in [2,31. 

For times less than 21/a ( a is the velocity of longitudinal waves in 

the medium, 21 is the width of the strip) the results that are obtained 

are simple. 

1. Let an elastic body occupy the half-space y 20. Its motion is de- 

scribed by the dynamic equations of I,am6 

(h + IL) grad div u+pbu = p$ 

Ilere h anti v are the k3rr1k constants, p is the density, U is the dis- 

placement vector, and u and 1, are its x and y components. 
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‘Ihe initial values are zero. On the boundary y = 0 we prescribe 
conditions. 

the 

(1.1) 

Here f(~, t) is a given function. This is the boundary value problem 

for a semi-infinite stamp fll. 

The following relation [l] exists between the formula obtained by 
using the Lapl,ace transformation for o in x and t at y = 0 and the 

formula obtained by using the same traiiformation for v at y = 0 and 

x>o 
(1.3) 

Here q and p are the Laplace transform parameters with respect to x 

and t 

where 6 is the root of the Rayleigh equation 

G (s) zz (isZ - 1)" + 42 Jf(I - 9) (y2 - 9) = 0 

thus the function K(s) is regular for Re s < y 

(St Z) .$ ($5) 

where I is a straight line in the complex plane q, parallel to the 

imaginary axis and located between the imaginary axis and the point 

4 = P/U 

0 (q, p) = fi crvv (z, t) e-++@ dzdt, V (q, p) = # 2$(x, t) e-+-@ dzdt (1.6) 
0. 0 

Hence, with the aid of formulas (1.2) to (1.6) one may obtain an ex- 

pression for ofq, p), corresponding to the boundary value problem (1.1). 

We examine three particular cases of this problem 

2, = f (t), 2, = 3X (t), V = f(t - tlz) (1.7) 
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The first case corresponds to the progressive penetration of a stamp, 
the second to the rotation through a small angle a with respect to the 
edge, and the third, as will be explained below, to the reflection of a 
plane wave from the boundary under mixed boundary conditions. 

Let us exmnine the first case, In agreement with (1.61, we obtain 

p (44 v (!?t PI = Q 

Meking use of the fact that K(s,) is regular for Re 5 < a-’ Re P, we 
have from (1.51, by virtue of the residue theorem 

L(!?,P) =bF+ I 

Now, from (1.2) one may obtain 

0 (‘?f P) = +F(p)y 

We apply to u(q, p) the Laplace transform inversion formula. ‘Ihen 

The contour 2, is parallel to the naginary axis of the complex plane 
q and lies in the right half-plane. y means of the residue theorem, the 
expression that has been obtained r Ay be brought to the form 

ad (5, P) = - awF (P) - $f PF W2$ s Irl: C- 4 eqr f 
1, 

If the contour I, is “placed” onto the cut El] introduced into the s 
plane to separate out a single-valued branch of H-s), we obtain 

Here 

N (4 ==16--s@,coscp(s) (TQ8f1), 
3s vs-r 

N (s) = $ ee-@) (S > 1) (1 JO) 
-s 

The functions g(s) and q(s) are given by formulas (1.31, and the inte- 
gral defining g(s) for y Q s< 1 is to be understood in the principal 
value sense. 
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Carrying out the inversion with respect to p, we obtain finally 

The first term in this expression gives the stress in the plane wave 
which would be generated underneath the stamp if the stamp extended over 
the entire boundary, whereas the second term gives the stre&s in waves 
which propagate from the edge of the stamp. 'Ihe fronts of these waves 
are shown in Fig. 1. Let us compute the magnitude of the resultant and 
moment of these stresses. 

It can be shown that the resultant is pro- 
portional to the displacement of the stamp, 
f(t), since for f(t) = t the second term in 
(1.11) depends only on btfx. This was kindly 
comnunicated to the author by V.P. Krysin. 

Vye denote the resultant of these stresses 

by R,(t) and its transform by R,'(p). 'Ihen 
from (1.8) we obtain 

Integrating with respect to x under the integral sign, we note that 
the remaining integral reduces to the evaluation of the residue at the 
origin. As a result, we obtain 

4“ (PI = -$xT)(~+21rmP) ( c,(rf=zrZ) (1.42) 

Here and in the sequel k,, k,, k,, . . . denote the coefficients in the 
expansion of K(s) in the ne&$&rho& of the origin 

R (s) = k, + k,s + k,Sa + k&’ + . . a 

From (1.12) it follows 

4 0) = -+,(rf(~+W(t) 

Analogously, we compute the moment M,(t) of these stresses 
spect to the edge of the stamp 

(i S3) 

(1 S4) 

with re- 
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We examine next the second of cases (1.7). In agreement with (1.5) and 

(1.6) we have 

(A(p)=~a(t)c-Pt dt) 

Proceeding in the same manner as before, we obtain, analogous to (1.8) 

ouu O(r, p) -= -uppA(p $I)(’ (~),$.~ ($-j- 2)K(- ~)e+~ds (1.16) 

or, deforming the contour l,, we find 

o,,o(r,~) = - UPPA (P) z + ‘~A(p)@cl +)N(s)exp{--‘F}ds (1.17) 

Inverting with 

under the base of 

Y 

respect to p, we find the distribution of stress u 

the stamp 
YY 

q/,(X, 1) = - apsa’ (t) (at < 2) (1.48) 

UY” (x, /) = - apza’ (t) + h* bf)&$!)N(s)a (t-y)ds Cat>zi 
Y 

Ilere, as in formula (1. ll), the first term describes the stress which 

would be produced under the stamp if the stamp occupied the entire bound- 

ary, and the second term gives the stress in waves that propagate from 

the edge of the stamp. In this case as weI1, the resultant and the moment 

with respect to n = Cl of these stresses may be calculated. For this it 

is convenient to use formula (1.16) 

R,O) =tc,(r)(h+2~)uStu(r)d~ ( cs = 2r2 [Gr-a) 
0 

M,(l) = -;D,(r)(h+2P)u2 {(t- z)a(t)dz 

(1.19) 

(J’2=W(~-~)) 

0 

In the third case of (1.7) we shall assume 

f (5) = 0 for E >Q e-i> a 

Then some calculations give 
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uyuo (5, p) = - &$!& UPPF (P) c-~“~ -I- 

+ 9 ~ppF (p) 5 N (s) exp { - SF} s/j&0 

Y 

(1.20) 

?he stress distribution is obtained by inverting this formula with 

respect. to p. 

uyy(s, t) = 0 (t < 0x1 (1.21) 

Proceeding as aboye, it is possible to compute the resultant, R,(&, t), 

and the moment M3(ue, t) (with respect to x = O), of the stresses (1.21) 

R,(ae,f)=--C,(ue,r)(h+2CL)f(t) ” be* ‘) = b(j 1/-f _ &a@ K(bf)) , 

jjqae,t) ED, (ae, 7) (h+2y)a ff (z)dz T 
(4WW =- c3(aeJ)(f ++‘)) 

btI 
0 

We may formulate a problem whose boundary conditions have the same 

form as the third case of (1.7). 

For x 20, let a rigid strip lie on an elastic half-plane, with points 

in the strip medium being prevented from moving vertically. In addition. 

assume the absence of friction between the strip and the elastic medium. 

Thus, for y = 0 and x >O points of the boundary that are contiguous with 

the strip, the conditions may be formulated as 

The remaining portion of the boundary y = 0. x < 0 is free of StiVSSeS. 

Let a plane wave be incident on the boundary, approaching the plate 

from the direction of the free portion of the boundary and impinging on 

the edge at t = 0. 

For t < 0, the motion of the medium may be determined by the known 

laws for the reflection of plane waves. 

For t > 0. the combination of incident and reflected plane waves from 
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the free boundary satisfies the boundary conditions for L < 0, and like- 
wise the condition 7 

XY = 0 for x > 0. For x > 0. the condition that the 
vertical displacement should vanish is not fulfilled, and the displace- 
ment in this combination of waves may be expressed in the form v=f(t -0x). 
where 8” is the velocity of the trace of 

the wave fronts along the boundary. There- 
fore for t > 0 it is necessary to supple- 
ment the solution that we already have by 
the solution of a mixed boundary value 
problem for an elastic half-plane, which, 
for y = 0 satisfies the conditions 

T,,.!, -0 (--<<<@Jao), %V 
=o (x<o; 

2,=-f(t--ez) (z>O) (1.23) Fig. 2. 

But these are just the conditions for which the stresses (1.21) were 
comauted. In such a case, the first term of this formula, taken with 
Opposite sign, may be interpreted as the stress caused by the incidence 
on the boundary of an arbitrary plane wave, when the boundary conditions 

TxY 
=Oandu= 0 are satisfied. One may not overlook the fact here that 

fct - 8x) is the total vertical displacement oa the free boundary when 
the same plane wave is incident on it, 

BY the use of the theory of reflection of plane waves, it may be 
verified. independently of the above argument, that the incidence of 
such an arbitrary plane wave produces a total displacement of the free 
boundary and a normal stress of the “semirigid” boundary that are related 
in just this way. 

As in formulas (1.11) and (1.16), the second term gives a stress in 
the waves propagating from the edge of the plate and describes a phenome- 
non Close to the phenomenon of diffraction. The fronts of all the waves 
that are produced are shown in Fig. 2. 

Another modification of this same problem may be given which also 
leads to the solution (1.21). On the boundary of the elastic half-plane, 
let a load move in the positive r-direction 

%v = - p (t - kc) (e-l> a), T,v .-: 0, p(E) =0 for (5 CO) (1.24) 

At t = 0 the load reaches the edge of the rigid strip and continues 
to move farther along it. The problem consists of determining the motion 
of the medium and, which is more important. the stresses produced under 

the strip. The solution. as in the first modification of the problem. is 

sought as the sum of two solutions. 
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The first is represented in the form of two plane waves, longitudinal 
and transverse, proceeding from the boundary downward into the medium, 
with the vertical displacements on the boundary being given by 

v-r*-b*@ 5p(T)dr 
v (8 = bet (be) s (5 = t - ez) 

0 

(1.25) 

The conditions (1.23) obtain in the case of the second solution, where 
u is given by (1.25). It is already clear that the formula (1.21) gives 
an expression for the stresses on the boundary in the case of the second 
solution. The actual stress under the plate is given by the sum of the 
stresses of the two solutions, i.e. formula (1.21). with the first term 
omitted. and f(c) taken from (1.25) with opposite sign. 

We list here the values of 

and (1.19). as functions of y 

the coefficients C,, Cq, D2,.from (1.12) 

TABLE 1. 

r= 0.1 0.2 0.3 0.4 0.5 0.6 
Cl = - 0.6839 -0.3751 -0.09906 0.1340 0.1340 0.4343 
C, = -0.3479 -0.3379 -0.2467 -0.1131 0.02397 0.1213 
Dg= 0.1824 0.3465 0.3665 0.2889 0.1702 0.06726 

We note that as y decreases the coefficients Cc and C, change sign. 

This indicates that tensile stresses dominate in the wave produced on 
the edge of the stamp. Hence, for penetration at these values of y, it 
is possible for the medium to “peel-off” from the bottom of the stamp. 

At Y = 0, a calculation yields Cl = - 1, which agrees with the solution 
of the corresponding acoustic problem [2,41. 

2. We consider the following problem. A rigid strip-mass of infinite 
length and width 21 lies on an elastic half-space y>O. Friction between 
the strip and the elastic medium is absent, and vertical displacements 
of points of the medium coincide with the displacements of corresponding 
points of the strip. 

Assume now that at t = 0 a normal plane longitudinal wave from below 
is incident on the surface of the half-space. It is required to find the 
motion of the strip under the action of the wave. ‘lhe solution will be 
constructed for t -C 21/a. 

We place the origin of coordinates at the center of the plate, with 
the y-axis directed downwards and the x-axis directed perpendicular to 
the edge of the plate. ‘lhe displacements in the indicent waves are 
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are denoted by v = uO(t + y/a). 

The mass per unit length of the plate is denoted by m, the resultant 

force of the normal stresses under the plate by R, and the displacements 

of the plate itself by u(t). Then 

mv" (t) = R (2.1) 

'lhe motion of the elastic medium excited by the incidence of the wave 

on the boundary and the oscillations of the plate may be represented as 

Fig. 3. 

the sum of two motions: the first is 

the motion which would be excited in 

the absence of the plate (reflection 

of a plane wave from a free boundary), 

and the second is the motion that 

would occur in the half-space if it 

were penetrated by the strip accord- 

ing to the as yet unknown law v,(t). 

Then 

2, (t) = 2v, (t) + Dl (t) (2.2) 

The fronts of all the waves that are produced are sketched in Fig. 3. 

Let US compute X. The first motion does not contribute to R. lhere- 

fore to compute R it is necessary to use the solution of the dynamic 

stamp problem. However, if the time is limited to t < 21/a, it is suffi- 

cient to know the solution for the semi-infinite stamp penetrating the 

half-plane according to v,(t). 'ihen, using (1.11) and (1.12), we obtain 

N = - 2apW, (1) - C, (A $ 2p) U, (i) 

Substituting this and (2.2) into (2.1), we will have 

mvnl + 2aplv", + C, (h + 2p) vr = - 2mv”, 

or 

6, + 2Mnv’, + C,Mn2v, = - 2v”, (M = pP/m, n = a/l) (2.3) 

The initial conditions are formulated in the following way 

v'r (0) + 2v’, (0) - 0, v1 (0) + 2v, (0) = 0 

Seismic waves from earthquakes are usually of long period, whereas 
the interval of time for which the motion of the strip is described by 

equations (2.3) is not large. Hence it is convenient to consider two 
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cases 

PO 
00 (t) -- ;;i; t, 

For the first of these the complete motion of the strip is given by 
the formula 

2Po 
v(t)=---;;i; t-t e-“‘sinhaT ( 1 ( a= ~Ma--itf~~, T= 

at 
T ) (2.5) 

Thus it is seen that the motion of the strip “relative to the wave” 
may be either aperiodic or, if M < Cl, a damped sinusoid. 

The parameter M characterizes the ratio of a certain mass of the 
medium to the mass of the strip. If the strip is “light”, the motion is 
aperiodic and the damping is large; the “heavier” the strip. the weaker 

the damping. whereas the frequency of the oscillation first increases 
and then diminishes. 

For M&l (light strip) the maximum deviation from the motion of the 
free boundary will be attained within the time interval for which equa- 
tion (2.3) holds. Namely. at time 

M+a 
t +lnM~ + 

The lighter the strip, and the smaller t , the faster it will move, 
as the boundary would move in the absence oi the strip. 

As for the acceleration of the entire motion of the strip, its maximum 
value in the present case is attained at the instant of approach of the 
wave and is equal to 

v,‘=-4pl/m 

Subsequently it approaches zero. 

In the second case (2.4). the acceleration of the complete motion of 
the strip is 

v’ (t) = - $${I + &[(M - (~)e---=)~ -(M+a)e-("-k)7]} 

at the initial instant of time the acceleration of the strip is zero, 

and afterwards it begins to increase. If the strip is sufficiently light, 
its maximum is attained at the time 

By the use of the foregoing formula, it is possible to compute its 
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magnitude. 

One last comment. If 

00 (t) = A sin of 

then for SUfffCientlY light strips, frequencies occur such that the strip 

breaks away from the half-space, i.e. the resultant of the stresses under 

the strip goes to zero and the velocity is negative. 

3. We consider, as in Section 2, a rigid, homogeneous strip-mass of 
width 21 on an elastic half-space. We locate the coordinate system in the 
same way as in Section 2. We shall solve the problem of the motion of 
the strip when this motion causes a plane wave (completely longitudinal 
or transverse),, incident at an arbitrary angle less than the critical 
angle (for a free boundary) and initially reaching the left edge of the 
strip at t = 0. lhe vertical displacements produced by the reflection of 
the plane wave from the free boundary y = 0 have the form 

2’ = V. (t - ez) P-1 > a) (3.4) 

Under the action of the wave, the strip begins to move. However, since 
it is rigid and, by assumption, there is no separation, the vertical dis- 
placement of points of the medium bounded by the strip will be given by 

Fig. 4. 

2, (5, t) = w (t) + $a (t) (3.8 

Here lo(t) is the displacement 
of the center of the strip and 
a(t) is the small angle of rota- 
tion of the strip. 

?he equations of motion of 
the strip are 

MWN (t) = R (1), la” (t) = M (t) 

(3.3) 

Here m is the mass per unit length of the strip, I is the moment of 
inertia per unit length relative to the middle, R(t) and M(t) are the 
resultant and resultant moment (relative to the middle) of the stresses 
under the strip. The initial conditions for equations (3.3) are all zero. 

In order to express R(t) and M(t) in terms of ~a, TU and a(t) we re- 
present the motion of the elastic medium as the sum of two motions: one 
excited by the penetration of the stamp into the elastic half-plane in 
accordance with (3.2), and the second excited by the reflection of a 
plane wave from the boundary under the following conditions 
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Txy = 0 (-=<z<w @JYY =o w4> 4 u 10 (Izl<l) 

The wave fronts that are produced are sketched in Fig. 4. 

If the solution of these problems is sought for t < 218, i.e. for 
times such that the trace of the incident wave has not passed over the 
entire width of the strip, then the results presented in Section 1 may 
be used. 

Let us compute the resultant. ‘lhe stresses excited by a small rotation 
of the strip do not contribute to the resultant. Using formulas (1.12) 
and (1.X?), wherein it is necessary to set f(t) =wft) and f(t) = -u,(t), 
respectively, we obtain 

R (t) = - 2aplw’ - CI (A + 2P) w + C, (A + $) VI (3.4) 

In the computation of the moment of the stresses relative to the 
middle of the strip, it is necessary to take into consideration the fact 
that the stresses excited by a translational motion of strip give a zero 
moment. 

As regards the stress moment excited by a small rotation, one should 
keep in mind that in the neighborhood of the left end the displacement 
may be represented as the sum of displac~nts excited by a translational 
displacement of the strip of magnitude -a(t)Z and a rotation through the 
angle a(t); likewise, in the neighborhood of the right end as a transla- 
t&al displacement of a(t) I and-a rotation through the 

We express the stress moment M(t) in terms of R,(t), 
R&e, t), &(s, t) from (1.131, (1.19) and (1.22). In 
sary to set in (1.12) and (1.22) 

f (t) = la 01, f (0 = - vo (t) 

respectively. 

Then we obtain 

angle -a(t). 

R,(t), M,(d, 
this it is neces- 

(3.5) 

M(t) = - 4np;‘(t) + 2ZR,(t) - 2lR,(t) - 2&f,(t) - ZR,(aO,t) +M,(aO, t 

Substituting (3.4) and (3.5) into (3.3) and setting 1 = m1’/3, we 
obtain, after some tr~sfo~ations 

WV + 2Mnw’ + C1Mn2w = C3Mn~vo (M-pP/nt, n=a/l) (d.i;l 
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czIv + 4Mna” + 3C1Mn2ci’ + 3C2MnSa’ + 3D,Mda = 

= - X,MnY-‘u,” - 3D,MnY-’ u,,’ (3.7) 

The solutions of these equations must satisfy the initial conditions 

w (0) = W’ (0) = 0 

a (0) = 01’ (0) = cc (0) = a” (0) = 0, if v<(O) = 0 (3.8! 

This follows from the second of equations (3.3) and its initial con- 
ditions. ‘Ihe roots of the characteristic equation corresponding to (3.6) 

are 

h? = -;(M~JfM2 -MC,) (3.9) 

The roots of the characteristic equation corresponding to (3.7) may 

be represented in the form 

We list some values of vk as a function of M, for* y = l/J 3 

TABLE 2. 

M VI v2 v3,4 = & f io o,+ Au" 

’ 0.5 1.659 0.05743 0.1719 fi 0.1493 

0.6 2.664 0.05739 0.1391 fi 0.1469 

0.7 2.468 0.05736 0.1372 fi 0.1454 

0.8 2.871 0.05734 0.1359 fi 0.1743 
1.0 3.675 0.05731 0.1350 fi 0.1429 
1.2 4.477 0.05729 0.1329 fi0.1420 0.2 I!I T 

1.5 5.679 0.05727 0.1318 fi 0.1411 0 2 
Fig. 5. 

As an example we consider. as in Section 2, an incident longitudinal 
wave, characterized by a constant compressive stress -p,, and a velocity 
of motion of the trace of the front along the boundary of 6” > a. 

Then 

po I/p-w 1 
vo (t) = - - 

UP -tG (W 
(3 .lO) 

The acceleration of translational motion will be 

‘rko 
c4 = b0K (be) 

(3.11) 
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where h, and h, are given by (3.9). 

For M = 1 and y = l/J 3, the graph of the quantity w”(t) a8 a function 

of T = at/l is shown in Fig. 5. Xn addition, in Fig. 5 we have introduced 

the notation 

IP 

Hence, equations (3.6) and (3.7) may be used 001s for t Q 210, I.e. 
for times for which the trace of the incident wave has not reached the 
right edge of the strip. Thus in cases Par which 218 is small (close to 
normal incidence), one can only say that the acceleration increases mono- 

tonically. 

We turo next to equation (3.7). 
possible to use conditions (3.8), 

Taking this into consideration 
respect to t, we obtain 

a (0) = a’ (0) = a” (0) = 0, 

The s0iuti00 0r (3.7) for such 
choice of u,,(t) has the form 

Fig. 6. 

where 

In the example considered it is not 

since ~‘~(0) # 0. 

in the dirfereatiation of (3.6) with 

a”’ (0) = - 3CsMnsl%‘s (8) 

initial conditions and the indicated 

a0 (Z) = Ale"'*' + As -W - Zewcs (As cos 07 + A( sin 0%) 

The integration constants A,, AS, A3 and A, 
are determined from the initial conditions. 

The dependence of a’t’r) for M = 1, y = 1/J 3, 
a8 = 0.5 is shown in Fig. 6, where B = pl*/3D,po. 

4. In order to determine the motion of the strip for t > 21/a, it is 
necessary to be able to form u for y = 0 and x < 0, when the following 
conditions are specified on thz'kundazy of the elastic half-plane y>O 

%I = 0 (- m<z<oo), v=o (z<O), 5yll=h(qt) (z>O) (4.1) 

Here h(x, t) is a given function. 
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‘Ihe solution of this problem may be obtained in the same manner as in 
[l] by means of the Wiener-~pf-Fock method [5,6]. ‘Iberefore, we write 

Qz ((7, P) = - Ir’ (4 L (qt PI (8 = “” ) -F 
Here, as before, p and q are Laplace transform parameters with respect 

to x and t; the function ii(s) is given by (1.31, and I, denotes a function 
that is regular in the complex q plane for Re q < a-’ Re p 

(4.3) 

Ihe contour I is an infinite straight line, parallel to the ima~na~ 
axis, and lying in the right half-plane left of the point ?j = p/a 

a,(q, p) =~e-%ft \ e+& (5, 1) dz, 61 (q, p) = ho-h (z, 
0 0 -03 

From the zero initial conditions it 
Re q -C a-’ Fk p, whereas al is regular 

In order to obtain u 
Laplace transform formu as relative to 31y 

(x, t) , it is 

version with respect to q gives 

follows that a2 is 
for Re q > 0. 

regular 

necessary to apply the inverse 
q and p to cr2 <from (4.4). lhe in- 

(4.4) 

t) dx dt 

for 

(4.5) 

‘Ihe contour 1, is a straight line lying between the imaginary axis of 
the (I plane and the contour I. Integrating (4.5) with respect to x under 

the integral sign, we have 

0 

R” (PI = s ’ ali (x, p) dz = - 2% K (s) L (q, p) $ 
-00 1 f 

However K(s) and L(q, p) are regular in the left-half-plane and their 
product tends to zero at infinity. Therefore the integral that has been 

obtained is equal to the residue at q = 0, and the transform of the re- 
sultant is 

(4.6) 

Analogously, for the transform of the moment M(t), relative to n = 0, 
we have 
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We consider the case when 

h (5, t) = h (t - 0s) 

Then 

(W > a) 

(4.7) 

(4.8) 

61 (cl, P) = * (H(p) =jh(t)i"dt) 
0 

Carrying out the integrations (4.6) and (4.7) by means of the residue 

theorem and inverting the result with respect to p, we obtain 

5. We return to the problem of strip motion formulated in Section 3. 

‘lhe solution obtained was correct up to times for which the trace of the 

incident wave front had not reached the right edge of the strip. By the 

use of formulas (4.91, one may obtain the solution correct for 

O,<t\<21/a w 

To do this it is necessary to take into account the effect of the 

interaction of the incident wave with the right edge of the strip. ‘lhis 

may be done by adding to the motion produced by the reflection of a 

plane wave from the semi-infinite strip, the motion excited by the appli- 

cation to the boundary x > 21 of the negative of the stresses which 

occur in the first motion. 

The fronts of the incident, reflected waves and the fronts of the 

longitudinal waves produced on the edge of the strip are shown in Fig.?; 

the transverse wave fronts are not indicated in the figure. 

If the time interval is restricted to (5.11, then it is sufficient to 

consider 

gvu (~9 0 = h b, t) = - vG&_apvo ft _ oz _ 2z0) - (5.2) 

lhis follows from (1.21) if one takes into account the fact that the 
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trace of the incident front meets the left edge at t = 0. 

Fig. 7. Fig. 8. 

In accordance with (4.91, it is necessary to add to the expressions 

for the resultant (3.4) and the moment (3.5) the following 

AR (4 = - v/1--3 cs (h + 2p) 00 (t - 228) 

t--a&l (5.3) 

C W 
AM (0 = ,,.*-_ 

‘Ihese additions also take into consideration the fact that stresses 

of the type in the first term of (1.9) act only under the strip. 

0 T zero. 
2 

a Ba” 
‘Ihe computation (5.3) leads to the fact that 

‘t 

on the right sides of (3.6) and (3.7) new terms 

appear which, for t > 210, are different from 

When v,,(t) is chosen in the form of (3.10), 

-QB these terms will be of the form 

PO a 31 
-Lb 5 (4) &!f (t - ue), -G T ( 1 

7 3D5M 

For 219 < t < 21/a, this implies that, from 
Fig. 9. the accelerations of translational and rota- 

tional motion computed by formulas (3.11) and 
(3.12). it is necessary to subtract the expressions which result from 
the same formulas when C, and D, are replaced by C5 and D5 and the argu- 
ment t is changed to t - 219. 

The graph of the translational motion acceleration shows that if 
a8 < l/2. then its maximum value is attained at the instant of appear- 
ance of the trace of the incident wave at the right edge of the strip 
and is of magnitude w”(t) from (3.12). where T = 2 ae. 
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In Figs. 8 and 9 are shown the dependence of W” and a” on f = at/t. 

computed under the same assumptions as in Figs. 5 and 6. The meaning of 

the notations A and B is also indicated above. 

Below we give the dependence of C,, Dg on a0 for y = 0.6. 

TABLE 3. 

a0 = 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Cs = 9.802 4.800 3.130 2.310 1.813 1.486 1.251 1.079 0.9465 

D5 = 114.0 28.58 12.71 7.150 4.588 3.193 2.350 1.808 1.434 

6. In studying the motion of the strip for t < 21/a, we in fact used 
the solutions for the semi-infinite stamp and the reflection of a plane 
wave from a semi-infinite strip lying on an elastic half-space. Both of 
these led to se1 f-modelling problems, which also explains the simplicity 
of the results. ‘Ibe construction of a solution valid over a large inter- 
val of time requires the solution of the problem of the interaction of 
the wave formed, say, on the left end of 
the strip with the free boundary found 
behind the right end of the strip. 

at _,_21 J 
-I- > 

We locate the origin of coordinates 
s 

on the left end of the strip, with the 
x-axis directed toward the right and the 
y-axis directed downward into the medium. 

Let a wave be formed on the left end Pig. 10. 
of the strip, producing stresses under 
the strip whose transform is of the form 

Here vn is a certain volume in the n-dimensional space with coordi- 
nates sI, s2, *.., sn, Qn(M,, p) is a function of a point in the space 
and of the parameter p. 

We shall assume that the resultant and 
known. 

At the time t = 21/a, the wave reaches 
new wave is formed. 

For simplicity, only the fronts of the 
in Fig. 10. 

moment of these stresses is 

the right end, upon which a 

longitudinal waves are shown 
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‘Ihe motion which is excited in the medium may be represented as the 
sum of a motion in the “incident” wave and one in the “reflected” wave, 
which should be such that its stresses, for x2221, are equal and of 
opposite sign to those of (6.1). Thereby, it will turn out that for 

x>21 the boundary is free of stress. In order to construct such a wave, 
it is necessary to use the results of Section 4. 

We displace the origin of coordinates to the point n = 21. Taking 
into account the above, it is necessary, for w > 0, to apply (in the new 
coordinates) a stress h(x, t) such that 

ho (z, p) = r e+h (5, t) dt = - 1 Qn (M,, p) e-Vv, (= = (21 +~IQ/N VW 

0 % 

In aecordauce with (4.4) 

‘J1(w9= -$S Qn OK p)ew{- -$$-}A (6.3) 
0, 

Carrying out the integrations determining u,,y(z, p) in accordance 
with (4.3) and (4.5)) we obtain 

Q = - 
sN (4 

n+l Qt3-- 
0 + sn) if (- SJ 

eq{--v) 

(6.4) 

(6.5) 

‘Ihe formulas (6.1) and (6.4) have the identical structure, and hence 
(6.4) and (6.5) are recurrence formulas for the formation of the traus- 
forms of the stresses in waves reflected from the ends of the strip 

With the aid of (4.6) and (6.3), we obtain for the inverse of the re- 

sultant of the stresses (6.4) 

In order to cmpute the addition to the resultant A,/l”(p) which is 
introduced by the reflection from the edge of the strip, one cannot re- 
strict oneself to the expression introduced above, since a part of the 
resultant of the stresses (6.1) equilibrates (6.2). Taking this into 
accouut, we obtain 
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(6.6) 

Repeating similar arguments, we find from (4.7) 

A&f” (p) = - ($,” 5 (-$ - $) ‘~~~~~~ exp {- v} dv, (6.7) 

% 

We describe now what will occur upon successive “reflections from the 
boundaries” of the wave whose stresses have the transform given by (1.9). 

In this case vl is the interval y<sr\<m 

Q1 = $ PF (PJ N 6%) 

Then from (6.6) it follows 

. . . . . . . . ..I............... * 

AnR” (P) = (- Vw2~F (~1 s %a MJ 4, Wn, P) s> 
%a n 

where the volume u,, is such that sk > y, k = 1,2, . . . , rz 

k=n 

nn @&I) = n pk (Sk), 
k=i 

En (Mm, P) = exP {- F i Sk} 
k=l 

‘* 
N (Skf 

63.8 

Pk (Sk) = 
N (4 

Sk + sk-l K(-- ’ ‘1 (‘1) = K(-- 

Carrying out the inversion with respect to p, we obtain 

. . . . . . . . . . . . . . . . . . . . . . * . (6.9) 

AR,, (t) = (- l)“a2pq’ 1 . nn (M,) f (t - $ i Sk) 2 

an ?i=l 

Here zt,, is a volume in the n-dimensional space sr, . . . . s, such that 
7‘ 

sh. > r, 2 Sk<+- (6.10) 
k=l 
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By a change of variables these expressions may be brought to the form 

T* 

A,!? (t) = (- l)*2a3pP \ f (z)Sn (t - z) dr (Tn= t -T) (6.11) 
. 
0 

‘Ihen in the case of translational motion of the strip, we have, with 

account of (1.11) and (1.12), the following for the resultant of the 
stresses acting on the strip 

(6.12) 
Tn 

R (2) = - 2aplf' (t) - C,a2pf (1) + 4aSpP i (-1)" \ f (z) S,, (1 - z) da 
?2=1 b 

(m = E (~~/ZZ)) 

It is not difficult to discern that the structure of (6.12) is such 

that, after substitution of R(t) into (2.1) and into the first equation 

(3.3) for the determination of v,(t) and w(t), ordinary differential 

equations with constant coefficients will be obtained at each step. Hence 

the problem that has been posed may be solved by quadratures. 

We consider now the reflection from the boundaries of a wave the 

transform of whose stresses is given by the second term of (1.17) 

91 = $ A (p) (k, - $‘) N (sl) (6.13) 

and u1 is the semi-infinite interval y<sl. 

‘Iben from (6.5), (6.6), (6.7) and (6.13) it follows that 

The integration is carried out over the volume (6.10). In addition, 

we have introduced the notation 

5 4 

q(zjJ r--1 \ Cx (t) clt, %x2 (8 = \ (E - 4 0: 0) dt 
<I ‘0 

To obtain an expression for the increase of the moments relative to 

the middle of the strip for a rotation through the angle a(t), it is 

necessary to proceed in the same way as in Section 3 for the derivation 
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of formula (3.6). In this, one must use formulas (6.14) and (6.9). In 
order to generalize equation (3.71, it is necessary to compute the in- 
crease of the resultant and moment of the stresses (1.21). 

‘Ihen, after some transformations originating from (6.111, at each 
step one obtains ordinary differential equations of fourth order for a(t) 
as well as for w(t). From these a(t) may be found at an arbitrary instant 
of time. 

7. As is seen from (1.3). (1.10). (6.8) and (6.9). the functions in 
(6.12) are extremely complicated. Hence it is desirable to determine, 
even if approximately, a representation of the role of the suppl&oentary 
terms in (6.12). To do this, we approximate q(g) from (1.3) by the func- 

tion Y(E) 

9 (El = B 0) 
If/(1 - 5) (E - 7) 

E - 50 (+r) 

The constants B(y) and &,(y) are to be chosen so that q~ = 9 at e = l/42, 
where q(c) has a maximum equal to ~12. As a result, we obtain a function 
which coincides with Q(C) at three points and, moreover. is such that its 
derivatives at these points also coincide. For 0.4 < y < 0.65 the accu- 
racy of this approximation is good. 

Non. g(s). K(s). N(S) and P(s) may be expressed in terms of elementary 
functions. For y = 0.6, A,R( t) and AtR( t) were computed for the case 
f(t) = fO const. For 21/o < t < 81/a it turned out that AIR(t) does not 
exceed 4 x 10W3(A + 2l.Q fO, 

5 x lo+ + 2w)f,. 
and 8.$?(t) for 4,1/a < t < 81/a does not exceed 

Comparing this with the fact that for 0 < t < 21/a 

R (0 = - zapijod (t) - 0.4343 (A + 2/q f. 

(for large periods it is necessary to add AIR(t), AzR(t), etc. to this 
expression), one may conclude that the additions introduced into the ex- 
pressions for the resultant in the stamp problem when reflections from 
the ends are taken into account, will not be large when f(t) changes 
slowly for t > l/a. 

This gives some basis for asserting that the solution of the strip 
motion problem and the reductions in Sections 2, 3 and 5 are certain 
approximation that is suitable over a large interval of time, as has 
been indicated. 

The author would like to thank N.V. Zvolinskii for his great interest 
in this work. 
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